Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 16 - Sections 16.1-16.8 - Exercises - Problems by Topic - Page 804: 42b

Answer

$pH = 10.20$

Work Step by Step

1000ml = 1L 275ml = 0.275 L 175ml = 0.175 L 1. Find the numbers of moles: $C(C_2H_5N{H_3}^+) * V(C_2H_5N{H_3}^+) = 0.2*0.275 = 0.055$ moles $C(C_2H_5N{H_2}) * V(C_2H_5N{H_2}) = 0.1*0.175 = 0.0175$ moles 2. Calculate the total volume: - Total volume: 0.275 + 0.175 = 0.45L 3. Calculate the final concentrations: $[C_2H_5N{H_3}^+] : \frac{0.055}{0.45} = 0.122M $ $[C_2H_5N{H_2}] : \frac{0.0175}{0.45} = 0.0389M $ 4. Since $C_2H_5N{H_3}^+$ is the conjugate acid of $C_2H_5N{H_2}$ , we can calculate its kb by using this equation: $K_b * K_a = K_w = 10^{-14}$ $ 5.6\times 10^{- 4} * K_a = 10^{-14}$ $K_a = \frac{10^{-14}}{ 5.6\times 10^{- 4}}$ $K_a = 1.79\times 10^{- 11}$ 5. Calculate the pKa Value $pKa = -log(Ka)$ $pKa = -log( 1.79 \times 10^{- 11})$ $pKa = 10.7$ 6. Check if the ratio is between 0.1 and 10: - $\frac{[Base]}{[Acid]} = \frac{0.0389}{0.122}$ - 0.318: It is. 7. Check if the compounds exceed the $K_a$ by 100 times or more: - $ \frac{0.0389}{1.79 \times 10^{-11}} = 2.18\times 10^{9}$ - $ \frac{0.122}{1.79 \times 10^{-11}} = 6.84\times 10^{9}$ 8. Using the Henderson–Hasselbalch equation: $pH = pKa + log(\frac{[Base]}{[Acid]})$ $pH = 10.7 + log(\frac{0.0389}{0.122})$ $pH = 10.7 + log(0.318)$ $pH = 10.7 + -0.50$ $pH = 10.20$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.