Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 16 - Sections 16.1-16.8 - Exercises - Problems by Topic - Page 804: 41b

Answer

The pH of this buffer is equal to 8.95;

Work Step by Step

1000ml = 1L 250ml = 0.25 L 125ml = 0.125 L 1. Find the numbers of moles: $C(N{H_4}^+) * V(N{H_4}^+) = 0.1*0.25 = 0.025$ moles $C(NH_3) * V(NH_3) = 0.1*0.125 = 0.0125$ moles 2. Calculate the total volume: - Total volume: 0.25 + 0.125 = 0.375L 3. Calculate the final concentrations: $[N{H_4}^+] : \frac{0.025}{0.375} = 0.0667M $ $[N{H_3}] : \frac{0.0125}{0.375} = 0.0333M $ 4. Since $N{H_4}^+$ is the conjugate acid of $NH_3$ , we can calculate its kb by using this equation: $K_b * K_a = K_w = 10^{-14}$ $ 1.76\times 10^{- 5} * K_a = 10^{-14}$ $K_a = \frac{10^{-14}}{ 1.76\times 10^{- 5}}$ $K_a = 5.68\times 10^{- 10}$ 5. Calculate the pKa Value $pKa = -log(Ka)$ $pKa = -log( 5.68 \times 10^{- 10})$ $pKa = 9.25$ 6. Check if the ratio is between 0.1 and 10: - $\frac{[Base]}{[Acid]} = \frac{0.0333}{0.0667}$ - 0.5: It is. 7. Check if the compounds exceed the $K_a$ by 100 times or more: - $ \frac{0.0333}{5.68 \times 10^{-10}} = 5.86\times 10^{7}$ - $ \frac{0.0667}{5.68 \times 10^{-10}} = 1.17\times 10^{8}$ 8. Using the Henderson–Hasselbalch equation: $pH = pKa + log(\frac{[Base]}{[Acid]})$ $pH = 9.25 + log(\frac{0.0333}{0.0667})$ $pH = 9.25 + log(0.5)$ $pH = 9.25 + -0.301$ $pH = 8.95$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.