Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 16 - Sections 16.1-16.8 - Exercises - Problems by Topic - Page 804: 34a

Answer

$pH = 11.949$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [CH_3N{H_3}^+] = x$ -$[CH_3NH_2] = [CH_3NH_2]_{initial} - x = 0.18 - x$ For approximation, we consider: $[CH_3NH_2] = 0.18M$ 2. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][CH_3N{H_3}^+]}{ [CH_3NH_2]}$ $Kb = 4.4 \times 10^{- 4}= \frac{x * x}{ 0.18}$ $Kb = 4.4 \times 10^{- 4}= \frac{x^2}{ 0.18}$ $ 7.92 \times 10^{- 5} = x^2$ $x = 8.899 \times 10^{- 3}$ Percent ionization: $\frac{ 8.899 \times 10^{- 3}}{ 0.18} \times 100\% = 4.944\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [CH_3N{H_3}^+] = x = 8.899 \times 10^{- 3}M $ $[CH_3NH_2] \approx 0.18M$ 3. Calculate the pH: $pOH = -log[OH^-]$ $pOH = -log( 8.899 \times 10^{- 3})$ $pOH = 2.051$ $pH + pOH = 14$ $pH + 2.051 = 14$ $pH = 11.949$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.