Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 16 - Sections 16.1-16.8 - Exercises - Problems by Topic - Page 804: 33b

Answer

$pH = 8.316$

Work Step by Step

- Identify the significant electrolytes: $Na^+$: Insignificant. $F^-$: Weak base. - Therefore, we just need to consider the $F^-$, to calculate the pH. 1. Since $F^-$ is the conjugate base of $HF$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 3.5\times 10^{- 4} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 3.5\times 10^{- 4}}$ $K_b = 2.857\times 10^{- 11}$ 2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [HF] = x$ -$[F^-] = [F^-]_{initial} - x = 0.15 - x$ For approximation, we consider: $[F^-] = 0.15M$ 3. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][HF]}{ [F^-]}$ $Kb = 2.857 \times 10^{- 11}= \frac{x * x}{ 0.15}$ $Kb = 2.857 \times 10^{- 11}= \frac{x^2}{ 0.15}$ $ 4.286 \times 10^{- 12} = x^2$ $x = 2.07 \times 10^{- 6}$ Percent ionization: $\frac{ 2.07 \times 10^{- 6}}{ 0.15} \times 100\% = 0.00138\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [HF] = x = 2.07 \times 10^{- 6}M $ $[F^-] \approx 0.15M$ 4. Calculate the pH. $pOH = -log[OH^-]$ $pOH = -log( 2.07 \times 10^{- 6})$ $pOH = 5.684$ $pH + pOH = 14$ $pH + 5.684 = 14$ $pH = 8.316$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.