Answer
$\frac{sin^2~x-cos^2~x}{csc~x} = 2~sin^3~x-sin~x$
Work Step by Step
$\frac{sin^2~x-cos^2~x}{csc~x} = \frac{sin^2~x-cos^2~x}{\frac{1}{sin~x}}$
$\frac{sin^2~x-cos^2~x}{csc~x} = sin^3~x-sin~x~cos^2~x$
$\frac{sin^2~x-cos^2~x}{csc~x} = sin^3~x-sin~x~(1-sin^2~x)$
$\frac{sin^2~x-cos^2~x}{csc~x} = sin^3~x-sin~x~+sin^3~x$
$\frac{sin^2~x-cos^2~x}{csc~x} = 2~sin^3~x-sin~x$