Answer
$\frac{1-cos~2x}{sin~2x} = tan~x$
Work Step by Step
$\frac{1-cos~2x}{sin~2x}$
When we graph this function, it looks like the graph of $~~tan~x$
We can verify this algebraically:
$\frac{1-cos~2x}{sin~2x}$
$= \frac{1-(1-2~sin^2~x)}{2~sin~x~cos~x}$
$= \frac{2~sin^2~x}{2~sin~x~cos~x}$
$= \frac{sin~x}{cos~x}$
$= tan~x$