Answer
$\frac{sin~x}{1-cos~x} = cot~\frac{x}{2}$
Work Step by Step
$\frac{sin~x}{1-cos~x}$
When we graph this function, it looks like the graph of $~~cot~\frac{x}{2}$
We can verify this algebraically:
$\frac{sin~x}{1-cos~x}$
$=\frac{1}{\frac{1-cos~x}{sin~x}}$
$=\frac{1}{tan~\frac{x}{2}}$
$=cot~\frac{x}{2}$