Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Review Exercises - Page 249: 59

Answer

$2~tan~x~csc~2x - tan^2~x = 1$

Work Step by Step

$2~tan~x~csc~2x - tan^2~x = \frac{2~tan~x}{sin~2x} - tan^2~x$ $2~tan~x~csc~2x - tan^2~x = \frac{2~\frac{sin~x}{cos~x}}{2~sin~x~cos~x} - \frac{sin^2~x}{cos^2~x}$ $2~tan~x~csc~2x - tan^2~x = \frac{\frac{1}{cos~x}}{cos~x} - \frac{sin^2~x}{cos^2~x}$ $2~tan~x~csc~2x - tan^2~x = \frac{1}{cos^2~x} - \frac{sin^2~x}{cos^2~x}$ $2~tan~x~csc~2x - tan^2~x = \frac{1-sin^2~x}{cos^2~x}$ $2~tan~x~csc~2x - tan^2~x = \frac{cos^2~x}{cos^2~x}$ $2~tan~x~csc~2x - tan^2~x = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.