Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 5 - Trigonometric Functions - Section 5.3 Properties of the Trigonometric Functions - 5.3 Assess Your Understanding - Page 418: 54

Answer

$\sin{\theta} =\dfrac{1}{3}$ $\cos{\theta} =-\dfrac{2\sqrt{2}}{3}$ $\tan{\theta}=-\dfrac{\sqrt{2}}{4}$ $\sec{\theta} =-\dfrac{3\sqrt{2}}{4}$ $\cot{\theta} = -2 \sqrt{2}$

Work Step by Step

$\sin{\theta} = \dfrac{1}{\csc{\theta}} = \dfrac{1}{3}$ Since $\cot{\theta} <0$ then $\tan{\theta} <0$. With $\tan{\theta} = \dfrac{\sin{\theta}}{\cos{\theta}} <0$ and $\sin{\theta}>0$, then $\cos{\theta} <0$. Thus, $\cos{\theta} = -\sqrt{1-\sin^2 {\theta}}$ $\cos{\theta} = -\sqrt{1-\left(\dfrac{1}{3} \right)^2}= -\dfrac{2\sqrt{2}}{3}$ $\tan{\theta}= \dfrac{\sin{\theta}}{\cos{\theta}}$ $\tan{\theta}= \dfrac{\dfrac{1}{3}}{-\dfrac{2\sqrt{2}}{3}} = -\dfrac{\sqrt{2}}{4}$ $\sec{\theta} = \dfrac{1}{\cos{\theta}}$ $\sec{\theta} = \dfrac{1}{-\dfrac{2\sqrt{2}}{3}} = -\dfrac{3\sqrt{2}}{4}$ $\cot{\theta} = \dfrac{1}{\tan{\theta}}$ $\cot{\theta} = \dfrac{1}{-\dfrac{\sqrt{2}}{4}} = -2 \sqrt{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.