Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 5 - Trigonometric Functions - Section 5.3 Properties of the Trigonometric Functions - 5.3 Assess Your Understanding - Page 418: 42

Answer

$\tan{\theta}=-2 \sqrt{2}$ $\csc{\theta} =\dfrac{3\sqrt{2}}{4}$ $\sec{\theta} =-3$ $\cot{\theta} =-\dfrac{\sqrt{2}}{4}$

Work Step by Step

$\tan{\theta}= \dfrac{\sin{\theta}}{\cos{\theta}}$ $\therefore \tan{\theta}= \dfrac{\dfrac{2\sqrt{2}}{3}}{-\dfrac{1}{3}}=-2 \sqrt{2}$ $\csc{\theta} = \dfrac{1}{\sin{\theta}}$ $\therefore \csc{\theta} = \dfrac{1}{\dfrac{2\sqrt{2}}{3}}=\dfrac{3\sqrt{2}}{4}$ $\sec{\theta} = \dfrac{1}{\cos{\theta}}$ $\therefore \sec{\theta} = \dfrac{1}{-\dfrac{1}{3}}= -3$ $\cot{\theta} = \dfrac{1}{\tan{\theta}}$ $\cot{\theta} = \dfrac{1}{-2 \sqrt{2}}= -\dfrac{\sqrt{2}}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.