Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 5 - Trigonometric Functions - Section 5.3 Properties of the Trigonometric Functions - 5.3 Assess Your Understanding - Page 418: 45

Answer

$\sin{\theta} =-\dfrac{3}{5}$ $\tan{\theta}= \dfrac{3}{4}$ $\csc{\theta} = -\dfrac{5}{3}$ $\sec{\theta} =-\dfrac{5}{4}$ $\cot{\theta} =\dfrac{4}{3}$

Work Step by Step

Since $\theta \in QIII$, then $\sin{\theta} <0$. Thus, $\sin{\theta} = -\sqrt{1-\cos^2 {\theta}}$ $\sin{\theta} = -\sqrt{1-\left(-\dfrac{4}{5} \right)^2} = -\dfrac{3}{5}$ $\tan{\theta}= \dfrac{\sin{\theta}}{\cos{\theta}}$ $\tan{\theta}= \dfrac{-\dfrac{3}{5}}{-\dfrac{4}{5}} = \dfrac{3}{4}$ $\csc{\theta} = \dfrac{1}{\sin{\theta}}$ $\csc{\theta} = \dfrac{1}{-\dfrac{3}{5}}= -\dfrac{5}{3}$ $\sec{\theta} = \dfrac{1}{\cos{\theta}}$ $\sec{\theta} = \dfrac{1}{-\dfrac{4}{5}} = -\dfrac{5}{4}$ $\cot{\theta} = \dfrac{1}{\tan{\theta}}$ $\cot{\theta} = \dfrac{1}{\dfrac{3}{4}} = \dfrac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.