Answer
$f^{-1}(x)=\frac{2}{\sqrt {1-2x}}$
Work Step by Step
Step 1. $f(x)=\frac{x^2-4}{2x^2} \Longrightarrow y=\frac{x^2-4}{2x^2} \Longrightarrow x=\frac{y^2-4}{2y^2} \Longrightarrow y=\frac{2}{\sqrt {1-2x}} \Longrightarrow f^{-1}(x)=\frac{2}{\sqrt {1-2x}}$
Step 2. Check $f(f^{-1}(x))=\frac{(\frac{2}{\sqrt {1-2x}})^2-4}{2(\frac{2}{\sqrt {1-2x}})^2}=x$ and $f^{-1}(f(x))=\frac{2}{\sqrt {1-2(\frac{x^2-4}{2x^2})}}=x$