Answer
$f^{-1}(x)=\frac{x}{3x-2}$
Work Step by Step
Step 1. $f(x)=\frac{2x}{3x-1} \Longrightarrow y=\frac{2x}{3x-1} \Longrightarrow x=\frac{2y}{3y-1} \Longrightarrow y=\frac{x}{3x-2} \Longrightarrow f^{-1}(x)=\frac{x}{3x-2}$
Step 2. Check $f(f^{-1}(x))=\frac{2(\frac{x}{3x-2})}{3(\frac{x}{3x-2})-1}=x$ and $f^{-1}(f(x))=\frac{\frac{2x}{3x-1}}{3(\frac{2x}{3x-1})-2}=x$