Answer
$\dfrac{x+6}{x-1} , \quad x\neq 1$
Work Step by Step
The denominators are additive inverses of each other so we factor out factoring $-1$ out of the denominator of the second rational as follows:
\begin{align*}
\frac{6}{x-1}-\frac{x}{1-x}&=\frac{6}{x-1}-\frac{x}{-(x-1)}\\
\\&=\frac{6}{x-1}-\frac{-x}{x-1}\\
\\&=\frac{6}{x-1}+\frac{x}{x-1}\\
\\&=\frac{x+6}{x-1}, \quad x\ne1\end{align*}