Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 5 - Trigonometric Functions - 5.2 Trigonometric Functions - 5.2 Exercises - Page 520: 145

Answer

$\sin\theta=\frac{\sqrt {2}}{6}$ $\cos\theta=-\frac{\sqrt {34}}{6}$ $\csc\theta=3\sqrt 2$ $\sec\theta=-\frac{3\sqrt {34}}{17}$ $\tan\theta=-\frac{\sqrt {17}}{17}$ $\cot\theta=-\sqrt {17}$

Work Step by Step

$\sin\theta=\frac{\sqrt {2}}{6}$ Recall that $\sin^{2}\theta+\cos^{2}\theta=1$ $\implies\cos^{2}\theta=1-\sin^{2}\theta=1-(\frac{\sqrt 2}{6})^{2}=\frac{34}{36}$ $\cos\theta=\pm\sqrt {\frac{34}{36}}=-\frac{\sqrt {34}}{6}$ (given $\cos\theta\lt0$) $\csc\theta=\frac{1}{\sin\theta}=\frac{6}{\sqrt {2}}=\frac{6\sqrt 2}{2}=3\sqrt 2$ $\sec\theta=\frac{1}{\cos\theta}=-\frac{6}{\sqrt {34}}=-\frac{6\sqrt {34}}{34}=-\frac{3\sqrt {34}}{17}$ $\tan\theta=\frac{\sin\theta}{\cos\theta}=\frac{\frac{\sqrt 2}{6}}{-\frac{\sqrt {34}}{6}}=-\frac{\sqrt 2}{\sqrt {34}}$ $=-\frac{\sqrt {2}\times\sqrt {34}}{34}=-\frac{\sqrt {2}\times\sqrt {2}\times\sqrt {17}}{2\times17}=-\frac{\sqrt {17}}{17}$ $\cot\theta=\frac{1}{\tan\theta}=-\frac{17}{\sqrt {17}}=-\sqrt {17}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.