Answer
$\cos\theta=-\frac{3}{5}$
$\sec\theta=-\frac{5}{3}$
$\sin\theta=-\frac{4}{5}$
$\csc\theta=-\frac{5}{4}$
$\tan\theta=\frac{4}{3}$
$\cot\theta=\frac{3}{4}$
Work Step by Step
$\cos\theta=-\frac{3}{5}$
$\sec\theta=\frac{1}{\cos\theta}=-\frac{5}{3}$
$\sin^{2}\theta=1-\cos^{2}\theta=1-(-\frac{3}{5})^{2}=\frac{16}{25}$
$\sin\theta=\pm\sqrt {\frac{16}{25}}=-\frac{4}{5}$ ($\sin\theta$ is negative in the third quadrant.)
$\csc\theta=\frac{1}{\sin\theta}=-\frac{5}{4}$
$\tan\theta=\frac{\sin\theta}{\cos\theta}=\frac{-\frac{4}{5}}{-\frac{3}{5}}=\frac{4}{3}$
$\cot\theta=\frac{1}{\tan\theta}=\frac{3}{4}$