Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.7 - Equations - Exercise Set - Page 107: 133

Answer

The solution set of the equation $\sqrt{x+8}-\sqrt{x-4}=2$ is $\left\{ 8 \right\}$.

Work Step by Step

The provided equation is $\sqrt{x+8}-\sqrt{x-4}=2$. Add $\sqrt{x-4}$ on both sides. $\begin{align} & \sqrt{x+8}-\sqrt{x-4}+\sqrt{x-4}=\sqrt{x-4}+2 \\ & \sqrt{x+8}=\sqrt{x-4}+2 \end{align}$ Take the square on both sides. $\begin{align} & {{\left( \sqrt{x+8} \right)}^{2}}={{\left( \sqrt{x-4}+2 \right)}^{2}} \\ & \left( x+8 \right)={{\left( \sqrt{x-4} \right)}^{2}}+2\left( \sqrt{x-4} \right)\left( 2 \right)+{{2}^{2}} \\ & x+8=x-4+4\sqrt{x-4}+4 \\ & x+8=x+4\sqrt{x-4} \end{align}$ Subtract $x$ from both sides. $\begin{align} & x+8-x=x+4\sqrt{x-4}-x \\ & 8=4\sqrt{x-4} \end{align}$ Divide $4$ on both sides. $2=\sqrt{x-4}$ Take the square on both sides. $4=x-4$ Add $4$ on both sides. $\begin{align} & 4+4=x-4+4 \\ & x=8 \end{align}$ The solution set of the provided equation $\sqrt{x+8}-\sqrt{x-4}=2$ is $\left\{ 8 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.