Answer
Solution set:$ \; \displaystyle \{-\frac{81}{11}\}$.
Work Step by Step
Simplify each side of the equation
$\begin{array}{lll}
\mathrm{L}\mathrm{H}\mathrm{S} = & ... & RHS=\\
=45-[4-2y-4(y+7)] & & =-4(1+3y)-[4-3(y+2)-2(2y-5)]\\
=45-[4-2y-4y-28] & & =-4-12y-[4-3y-6-4y+10]\\
=45-[-6y-24] & & =-4-12y-[-7y+8]\\
=45+6y+24 & & =-4-12y+7y-8\\
=6y+69 & & =-5y-12\\
& &
\end{array}$
The equation simplifies to
$-2y+29=-8y+17\qquad $ ... add $5y-69$
$11y=-81$
$ y=-\displaystyle \frac{81}{11}$
Solution set:$ \; \displaystyle \{-\frac{81}{11}\}$.