Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.7 - Equations - Exercise Set - Page 107: 131

Answer

The solution set of the equation $\frac{1}{{{x}^{2}}-3x+2}=\frac{1}{x+2}+\frac{5}{{{x}^{2}}-4}$ is $\left\{ \frac{-1\pm \sqrt{21}}{2} \right\}$.

Work Step by Step

The provided equation is $\frac{1}{{{x}^{2}}-3x+2}=\frac{1}{x+2}+\frac{5}{{{x}^{2}}-4}$. Now factorize the expression ${{x}^{2}}-3x+2$ as, $\begin{align} & {{x}^{2}}-3x+2={{x}^{2}}-2x-x+2 \\ & =x\left( x-2 \right)-1\left( x-2 \right) \\ & =\left( x-2 \right)\left( x-1 \right) \end{align}$ Use the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to simplify the expression ${{x}^{2}}-4$. $\begin{align} & {{x}^{2}}-4={{x}^{2}}-{{2}^{2}} \\ & =\left( x-2 \right)\left( x+2 \right) \end{align}$ The provided equation $\frac{1}{{{x}^{2}}-3x+2}=\frac{1}{x+2}+\frac{5}{{{x}^{2}}-4}$ can be written as, $\frac{1}{\left( x-2 \right)\left( x-1 \right)}=\frac{1}{x+2}+\frac{5}{\left( x-2 \right)\left( x+2 \right)}$ The least common denominator of the above equation is $\left( x-1 \right)\left( x-2 \right)\left( x+2 \right)$. Multiply the least common denominator by both sides. $\begin{align} & \left( x-1 \right)\left( x-2 \right)\left( x+2 \right)\left[ \frac{1}{\left( x-2 \right)\left( x-1 \right)} \right]=\left[ \frac{1}{x+2}+\frac{5}{\left( x-2 \right)\left( x+2 \right)} \right]\left( x-1 \right)\left( x-2 \right)\left( x+2 \right) \\ & \left( x+2 \right)=\left( x-1 \right)\left( x-2 \right)+5\left( x-1 \right) \end{align}$ Use distributive property to simplify the above equation. $\begin{align} & x+2={{x}^{2}}-2x-x+2+5x-5 \\ & x+2={{x}^{2}}+2x-3 \end{align}$ Subtract $2$ from both sides. $\begin{align} & x+2-2={{x}^{2}}+2x-3-2 \\ & x={{x}^{2}}+2x-5 \end{align}$ Subtract $x$ from both sides. $\begin{align} & x-x={{x}^{2}}+2x-5-x \\ & {{x}^{2}}+x-5=0 \end{align}$ Use the formula $x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ to solve the ${{x}^{2}}+x-5=0$ equation. Here, $a=1$, $b=1$ and $c=-5$. The solution of the equation ${{x}^{2}}+x-5=0$ is, $\begin{align} & x=\frac{-1\pm \sqrt{{{1}^{2}}-4\left( 1 \right)\left( -5 \right)}}{2\left( 1 \right)} \\ & =\frac{-1\pm \sqrt{1+20}}{2} \\ & =\frac{-1\pm \sqrt{21}}{2} \end{align}$ The solution set of the provided equation $\frac{1}{{{x}^{2}}-3x+2}=\frac{1}{x+2}+\frac{5}{{{x}^{2}}-4}$is $\left\{ \frac{-1\pm \sqrt{21}}{2} \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.