Answer
The determinant is $-407$.
Work Step by Step
In order to find the given determinant, first evaluate the individual determinant separately. So consider,
$\begin{align}
& \left| \begin{matrix}
5 & 0 \\
4 & -3 \\
\end{matrix} \right|=5\left( -3 \right)-4\left( 0 \right) \\
& =-15-0 \\
& =-15
\end{align}$
Next consider,
$\begin{align}
& \left| \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right|=-1\left( -1 \right)-0 \\
& =1-0 \\
& =1
\end{align}$
Now find,
$\begin{align}
& \left| \begin{matrix}
7 & -5 \\
4 & 6 \\
\end{matrix} \right|=7\left( 6 \right)-4\left( -5 \right) \\
& =42+20 \\
& =62
\end{align}$
And finally find,
$\begin{align}
& \left| \begin{matrix}
4 & 1 \\
-3 & 5 \\
\end{matrix} \right|=4\left( 5 \right)-\left( -3 \right)1 \\
& =20+3 \\
& =23
\end{align}$
Hence,
$\left| \begin{matrix}
\left| \begin{matrix}
5 & 0 \\
4 & -3 \\
\end{matrix} \right| & \left| \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right| \\
\left| \begin{matrix}
7 & -5 \\
4 & 6 \\
\end{matrix} \right| & \left| \begin{matrix}
4 & 1 \\
-3 & 5 \\
\end{matrix} \right| \\
\end{matrix} \right|=\left| \begin{matrix}
-15 & 1 \\
62 & 23 \\
\end{matrix} \right|$
Now calculate,
$\begin{align}
& \left| \begin{matrix}
-15 & 1 \\
62 & 23 \\
\end{matrix} \right|=\left( -15 \right)\left( 23 \right)-62\left( 1 \right) \\
& =-345-62 \\
& =-407
\end{align}$