Answer
The determinant is $78$.
Work Step by Step
This is a fourth order determinant, so in order to calculate this determinant, split it into a determinant of order 3. Expand along the second column as follows,
$\begin{align}
& \left| \begin{matrix}
3 & -1 & 1 & 2 \\
-2 & 0 & 0 & 0 \\
2 & -1 & -2 & 3 \\
1 & 4 & 2 & 3 \\
\end{matrix} \right|={{\left( -1 \right)}^{1+2}}\left( -1 \right)\left| \begin{matrix}
-2 & 0 & 0 \\
2 & -2 & 3 \\
1 & 2 & 3 \\
\end{matrix} \right|+{{\left( -1 \right)}^{3+2}}\left( -1 \right)\left| \begin{matrix}
3 & 1 & 2 \\
-2 & 0 & 0 \\
1 & 2 & 3 \\
\end{matrix} \right|+{{\left( -1 \right)}^{4+2}}4\left| \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 0 \\
2 & -2 & 3 \\
\end{matrix} \right| \\
& ={{\left( -1 \right)}^{3}}\left( -1 \right)\left| \begin{matrix}
-2 & 0 & 0 \\
2 & -2 & 3 \\
1 & 2 & 3 \\
\end{matrix} \right|+{{\left( -1 \right)}^{5}}\left( -1 \right)\left| \begin{matrix}
3 & 1 & 2 \\
-2 & 0 & 0 \\
1 & 2 & 3 \\
\end{matrix} \right|+{{\left( -1 \right)}^{6}}4\left| \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 0 \\
2 & -2 & 3 \\
\end{matrix} \right| \\
& =\left( -1 \right)\left( -1 \right)\left| \begin{matrix}
-2 & 0 & 0 \\
2 & -2 & 3 \\
1 & 2 & 3 \\
\end{matrix} \right|+\left( -1 \right)\left( -1 \right)\left| \begin{matrix}
3 & 1 & 2 \\
-2 & 0 & 0 \\
1 & 2 & 3 \\
\end{matrix} \right|+\left( 1 \right)4\left| \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 0 \\
2 & -2 & 3 \\
\end{matrix} \right| \\
& =\left| \begin{matrix}
-2 & 0 & 0 \\
2 & -2 & 3 \\
1 & 2 & 3 \\
\end{matrix} \right|+\left| \begin{matrix}
3 & 1 & 2 \\
-2 & 0 & 0 \\
1 & 2 & 3 \\
\end{matrix} \right|+4\left| \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 0 \\
2 & -2 & 3 \\
\end{matrix} \right|
\end{align}$
Now calculate each third order determinant as here:
First consider,
$\begin{align}
& \left| \begin{matrix}
-2 & 0 & 0 \\
2 & -2 & 3 \\
1 & 2 & 3 \\
\end{matrix} \right|=-2\left| \begin{matrix}
-2 & 3 \\
2 & 3 \\
\end{matrix} \right|-2\left| \begin{matrix}
0 & 0 \\
2 & 3 \\
\end{matrix} \right|+1\left| \begin{matrix}
0 & 0 \\
-2 & 3 \\
\end{matrix} \right| \\
& =-2\left[ -2\left( 3 \right)-2\left( 3 \right) \right]-2\left[ 0\left( 3 \right)-2\left( 0 \right) \right]+1\left[ 0\left( 3 \right)-\left( -2 \right)\left( 0 \right) \right] \\
& =-2\left[ -6-6 \right]-2\left( 0 \right)+1\left( 0 \right) \\
& =24
\end{align}$
Next consider the second determinant,
$\begin{align}
& \left| \begin{matrix}
3 & 1 & 2 \\
-2 & 0 & 0 \\
1 & 2 & 3 \\
\end{matrix} \right|=3\left| \begin{matrix}
0 & 0 \\
2 & 3 \\
\end{matrix} \right|-\left( -2 \right)\left| \begin{matrix}
1 & 2 \\
2 & 3 \\
\end{matrix} \right|+1\left| \begin{matrix}
1 & 2 \\
0 & 0 \\
\end{matrix} \right| \\
& =3\left[ 0\left( 3 \right)-2\left( 0 \right) \right]+2\left[ 1\left( 3 \right)-2\left( 2 \right) \right]+1\left[ 1\left( 0 \right)-0\left( 2 \right) \right] \\
& =3\left( 0 \right)+2\left( 3-4 \right)+1\left( 0 \right) \\
& =-2
\end{align}$
At last consider the third determinant,
$\begin{align}
& 4\left| \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 0 \\
2 & -2 & 3 \\
\end{matrix} \right|=4\left( 3\left| \begin{matrix}
0 & 0 \\
-2 & 3 \\
\end{matrix} \right|-\left( -2 \right)\left| \begin{matrix}
1 & 2 \\
-2 & 3 \\
\end{matrix} \right|+2\left| \begin{matrix}
1 & 2 \\
0 & 0 \\
\end{matrix} \right| \right) \\
& =4\left( 3\left[ 0\left( 3 \right)-\left( -2 \right)\left( 0 \right) \right]+2\left[ 1\left( 3 \right)-\left( -2 \right)\left( 2 \right) \right]+2\left[ 1\left( 0 \right)-0\left( 2 \right) \right] \right) \\
& =4\left( 3\left( 0 \right)+2\left( 3+4 \right)+2\left( 0 \right) \right) \\
& =56
\end{align}$
Now put these values in the original equations and simplify:
$\begin{align}
& \left| \begin{matrix}
3 & -1 & 1 & 2 \\
-2 & 0 & 0 & 0 \\
2 & -1 & -2 & 3 \\
1 & 4 & 2 & 3 \\
\end{matrix} \right|=\left| \begin{matrix}
-2 & 0 & 0 \\
2 & -2 & 3 \\
1 & 2 & 3 \\
\end{matrix} \right|+\left| \begin{matrix}
3 & 1 & 2 \\
-2 & 0 & 0 \\
1 & 2 & 3 \\
\end{matrix} \right|+4\left| \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 0 \\
2 & -2 & 3 \\
\end{matrix} \right| \\
& =24-2+56 \\
& =78
\end{align}$