Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.5 - Determinants and Cramer's Rule - Exercise Set - Page 946: 59

Answer

$\begin{align} & x=\frac{{{D}_{x}}}{D},y=\frac{{{D}_{y}}}{D},z=\frac{{{D}_{z}}}{D},\text{ where D}\ne \text{0} \\ & \\ \end{align}$.

Work Step by Step

A linear system in three variables is given by: $\begin{align} & {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z={{d}_{1}} \\ & {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z={{d}_{2}} \\ & {{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z={{d}_{3}} \\ \end{align}$ Where ${{a}_{1}},{{a}_{2}},{{a}_{3,}}{{b}_{1}}\text{,}{{\text{b}}_{2}}\text{,}{{\text{b}}_{3}}\text{,}{{\text{c}}_{1}}\text{,}{{\text{c}}_{2}}\text{and }{{\text{c}}_{3}}\text{ are coffecients and }{{\text{d}}_{1}},{{d}_{2}}\And {{c}_{3}}\text{ are constants}\text{.}$ Then, $\begin{align} & x=\frac{{{D}_{x}}}{D},y=\frac{{{D}_{y}}}{D},z=\frac{{{D}_{z}}}{D},\text{ where D}\ne \text{0} \\ & \\ \end{align}$ Where, $D=\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|\text{ }$ These are the coefficients of variables x, y, z ${{D}_{x}}=\left| \begin{matrix} {{d}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{d}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{d}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|$ Replace $x$ -coefficients in $D$ with the constants on the right of the three equations. ${{D}_{y}}=\left| \begin{matrix} {{a}_{1}} & {{d}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{d}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{d}_{3}} & {{c}_{3}} \\ \end{matrix} \right|$ Replace $y$ -coefficients in $D$ with the constants on the right of the three equations. ${{D}_{z}}=\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{d}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{d}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{d}_{3}} \\ \end{matrix} \right|$ Replace $z$ -coefficients in $D$ with the constants on the right of the three equations.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.