Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.5 - Determinants and Cramer's Rule - Exercise Set - Page 946: 57

Answer

The definition of a third order determinant is, $\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|$ $={{a}_{1}}{{b}_{2}}{{c}_{3}}+{{b}_{1}}{{c}_{2}}{{a}_{3}}+{{c}_{1}}{{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}}{{c}_{1}}-{{b}_{3}}{{c}_{2}}{{a}_{1}}-{{c}_{3}}{{a}_{2}}{{b}_{1}}$

Work Step by Step

The definition of a third order determinant is, $\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|={{a}_{1}}{{b}_{2}}{{c}_{3}}+{{b}_{1}}{{c}_{2}}{{a}_{3}}+{{c}_{1}}{{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}}{{c}_{1}}-{{b}_{3}}{{c}_{2}}{{a}_{1}}-{{c}_{3}}{{a}_{2}}{{b}_{1}}$ It can be further solved as: $\begin{align} & \left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|={{a}_{1}}{{b}_{2}}{{c}_{3}}+{{b}_{1}}{{c}_{2}}{{a}_{3}}+{{c}_{1}}{{a}_{2}}{{b}_{3}}-{{a}_{3}}{{b}_{2}}{{c}_{1}}-{{b}_{3}}{{c}_{2}}{{a}_{1}}-{{c}_{3}}{{a}_{2}}{{b}_{1}} \\ & ={{a}_{1}}{{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}}{{a}_{1}}-{{c}_{3}}{{a}_{2}}{{b}_{1}}+{{c}_{1}}{{a}_{2}}{{b}_{3}}+{{b}_{1}}{{c}_{2}}{{a}_{3}}-{{a}_{3}}{{b}_{2}}{{c}_{1}} \\ & ={{a}_{1}}({{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}})-{{a}_{2}}({{c}_{3}}{{b}_{1}}-{{c}_{1}}{{b}_{3}})+{{a}_{3}}({{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}) \\ & ={{a}_{1}}\left| \begin{matrix} {{b}_{2}} & {{c}_{2}} \\ {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|-{{a}_{2}}\left| \begin{matrix} {{b}_{1}} & {{c}_{1}} \\ {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|+{{a}_{3}}\left| \begin{matrix} {{b}_{1}} & {{c}_{1}} \\ {{b}_{2}} & {{c}_{2}} \\ \end{matrix} \right|\text{ (expanding along 1st column)} \end{align}$ Similarly, expand it along any row or column of the determinant. A third-order determinant can be evaluated with the help of any row or column.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.