Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Review Exercises - Page 950: 31

Answer

The matrix is, $\left[ \begin{array}{*{35}{r}} -2 & 0 & 0 \\ 1 & 1 & -3 \\ \end{array} \right]$

Work Step by Step

The matrix representing the triangle is $ B=\left[ \begin{array}{*{35}{r}} 0 & 2 & 2 \\ 0 & 0 & -4 \\ \end{array} \right]$ The translation matrix to move the triangle 2 units to the left will be, ${{T}_{1}}=\left[ \begin{array}{*{35}{r}} -2 & -2 & -2 \\ 0 & 0 & 0 \\ \end{array} \right]$ The translation matrix to move the triangle 1 unit up will be, ${{T}_{2}}=\left[ \begin{array}{*{35}{r}} 0 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array} \right]$ Therefore, the required translation matrix is given by: $\begin{align} & T={{T}_{1}}+{{T}_{2}} \\ & =\left[ \begin{array}{*{35}{r}} -2 & -2 & -2 \\ 0 & 0 & 0 \\ \end{array} \right]+\left[ \begin{array}{*{35}{r}} 0 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array} \right] \\ & =\left[ \begin{array}{*{35}{r}} -2 & -2 & -2 \\ 1 & 1 & 1 \\ \end{array} \right] \end{align}$ Hence the resultant matrix representing the newly transformed triangle will be given by, $\begin{align} & B+T=\left[ \begin{array}{*{35}{r}} 0 & 2 & 2 \\ 0 & 0 & -4 \\ \end{array} \right]+\left[ \begin{array}{*{35}{r}} -2 & -2 & -2 \\ 1 & 1 & 1 \\ \end{array} \right] \\ & =\left[ \begin{array}{*{35}{r}} -2 & 0 & 0 \\ 1 & 1 & -3 \\ \end{array} \right] \end{align}$ That is, the transformed graph is a triangle with vertices $\left( -2,0 \right),\left( 0,1 \right),\left( 0,-3 \right)$ The matrix representing the transformed triangle is $\left[ \begin{array}{*{35}{r}} -2 & 0 & 0 \\ 1 & 1 & -3 \\ \end{array} \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.