Answer
The matrix is, $\left[ \begin{array}{*{35}{r}}
-2 & 0 & 0 \\
1 & 1 & -3 \\
\end{array} \right]$
Work Step by Step
The matrix representing the triangle is
$ B=\left[ \begin{array}{*{35}{r}}
0 & 2 & 2 \\
0 & 0 & -4 \\
\end{array} \right]$
The translation matrix to move the triangle 2 units to the left will be, ${{T}_{1}}=\left[ \begin{array}{*{35}{r}}
-2 & -2 & -2 \\
0 & 0 & 0 \\
\end{array} \right]$
The translation matrix to move the triangle 1 unit up will be, ${{T}_{2}}=\left[ \begin{array}{*{35}{r}}
0 & 0 & 0 \\
1 & 1 & 1 \\
\end{array} \right]$
Therefore, the required translation matrix is given by:
$\begin{align}
& T={{T}_{1}}+{{T}_{2}} \\
& =\left[ \begin{array}{*{35}{r}}
-2 & -2 & -2 \\
0 & 0 & 0 \\
\end{array} \right]+\left[ \begin{array}{*{35}{r}}
0 & 0 & 0 \\
1 & 1 & 1 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{r}}
-2 & -2 & -2 \\
1 & 1 & 1 \\
\end{array} \right]
\end{align}$
Hence the resultant matrix representing the newly transformed triangle will be given by, $\begin{align}
& B+T=\left[ \begin{array}{*{35}{r}}
0 & 2 & 2 \\
0 & 0 & -4 \\
\end{array} \right]+\left[ \begin{array}{*{35}{r}}
-2 & -2 & -2 \\
1 & 1 & 1 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{r}}
-2 & 0 & 0 \\
1 & 1 & -3 \\
\end{array} \right]
\end{align}$
That is, the transformed graph is a triangle with vertices $\left( -2,0 \right),\left( 0,1 \right),\left( 0,-3 \right)$
The matrix representing the transformed triangle is $\left[ \begin{array}{*{35}{r}}
-2 & 0 & 0 \\
1 & 1 & -3 \\
\end{array} \right]$.