Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Review Exercises - Page 950: 22

Answer

The matrix $ BA $ is, $ BA=\left[ \begin{matrix} -10 & -6 & 2 \\ 16 & 3 & 4 \\ -23 & -16 & 7 \\ \end{matrix} \right]$

Work Step by Step

Here we need to find $ BA $. Therefore consider, $\begin{align} & BA=\left[ \begin{array}{*{35}{l}} 0 & -2 \\ 3 & 2 \\ 1 & -5 \\ \end{array} \right]\left[ \begin{array}{*{35}{l}} 2 & -1 & 2 \\ 5 & 3 & -1 \\ \end{array} \right] \\ & =\left[ \begin{matrix} 0\left( 2 \right)-2\left( 5 \right) & 0\left( -1 \right)-2\left( 3 \right) & 0\left( 2 \right)-2\left( -1 \right) \\ 3\left( 2 \right)+2\left( 5 \right) & 3\left( -1 \right)+2\left( 3 \right) & 3\left( 2 \right)+2\left( -1 \right) \\ 1\left( 2 \right)-5\left( 5 \right) & 1\left( -1 \right)-5\left( 3 \right) & 1\left( 2 \right)-5\left( -1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -10 & -6 & 2 \\ 6+10 & -3+6 & 6-2 \\ 2-25 & -1-15 & 2+5 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -10 & -6 & 2 \\ 16 & 3 & 4 \\ -23 & -16 & 7 \\ \end{matrix} \right] \end{align}$ Thus, $ BA=\left[ \begin{matrix} -10 & -6 & 2 \\ 16 & 3 & 4 \\ -23 & -16 & 7 \\ \end{matrix} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.