Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Review Exercises - Page 950: 12

Answer

a. $\begin{cases} x+y=500 \\ y-z =-250 \\ x+z=750 \end{cases}$ b. $(750-t, t-250, t)$ c. $x=350, y=150$

Work Step by Step

a. Using the figure given in the exercise, we can set up a system of equations as: $\begin{cases} 350+400=x+z \\ x+y=300+200 \\ z+450=y+700 \end{cases}$ or $\begin{cases} x+y=500 \\ y-z =-250 \\ x+z=750 \end{cases}$ b. Write the matrix and perform row operations: $\begin{bmatrix} 1 & 1 & 0 & | & 500 \\ 0 & 1 & -1 & | &-250 \\ 1 & 0 & 1 & | & 750 \end{bmatrix}\begin{array} .. \\..\\ R1-R3\to R3 \end{array}$ $\begin{bmatrix} 1 & 1 & 0 & | & 500 \\ 0 & 1 & -1 & | &-250 \\ 0 & 1 & -1 & | & -250 \end{bmatrix}\begin{array} .. \\..\\ R3-R2 \to R3 \end{array}$ $\begin{bmatrix} 1 & 1 & 0 & | & 500 \\ 0 & 1 & -1 & | &-250 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}\begin{array} .. \\..\\ .. \end{array}$ We have a dependent system. Let $z=t\geq0$; then $y=t-250, x=750-t, 250\leq t \leq 750$ Thus the solution set is $(750-t, t-250, t)$ and $ 250\leq t \leq 750$ c. Let $z=400$. We have $x=350, y=150$ (cars per hour).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.