Answer
The matrix $ AB $ is, $ AB=\left[ \begin{matrix}
-1 & -16 \\
8 & 1 \\
\end{matrix} \right]$
Work Step by Step
Here we need to find $ AB $. Therefore consider, $\begin{align}
& AB=\left[ \begin{array}{*{35}{l}}
2 & -1 & 2 \\
5 & 3 & -1 \\
\end{array} \right]\left[ \begin{array}{*{35}{l}}
0 & -2 \\
3 & 2 \\
1 & -5 \\
\end{array} \right] \\
& =\left[ \begin{matrix}
2\left( 0 \right)-1\left( 3 \right)+2\left( 1 \right) & 2\left( -2 \right)-1\left( 2 \right)+2\left( -5 \right) \\
5\left( 0 \right)+3\left( 3 \right)-1\left( 1 \right) & 5\left( -2 \right)+3\left( 2 \right)-1\left( -5 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0-3+2 & -4-2-10 \\
0+9-1 & -10+6+5 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & -16 \\
8 & 1 \\
\end{matrix} \right]
\end{align}$
Thus, $ AB=\left[ \begin{matrix}
-1 & -16 \\
8 & 1 \\
\end{matrix} \right]$