Answer
The matrix $ A+D $ is, $ A+D=\left[ \begin{array}{*{35}{l}}
0 & 2 & 3 \\
8 & 1 & 3 \\
\end{array} \right]$
Work Step by Step
Here we need to find $ A+D $. Therefore consider, $\begin{align}
& A+D=\left[ \begin{array}{*{35}{l}}
2 & -1 & 2 \\
5 & 3 & -1 \\
\end{array} \right]+\left[ \begin{array}{*{35}{l}}
-2 & 3 & 1 \\
3 & -2 & 4 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
2-2 & -1+3 & 2+1 \\
5+3 & 3-2 & -1+4 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
0 & 2 & 3 \\
8 & 1 & 3 \\
\end{array} \right]
\end{align}$
Thus, $ A+D=\left[ \begin{array}{*{35}{l}}
0 & 2 & 3 \\
8 & 1 & 3 \\
\end{array} \right]$.