Answer
The matrix $-5\left( A+D \right)$ is, $-5\left( A+D \right)=\left[ \begin{array}{*{35}{l}}
0 & -10 & -15 \\
-40 & -5 & -15 \\
\end{array} \right]$.
Work Step by Step
Here we need to find $-5\left( A+D \right)$. Therefore consider, $\begin{align}
& -5\left( A+D \right)=-5A-5D \\
& =-5\left[ \begin{array}{*{35}{l}}
2 & -1 & 2 \\
5 & 3 & -1 \\
\end{array} \right]-5\left[ \begin{array}{*{35}{l}}
-2 & 3 & 1 \\
3 & -2 & 4 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
-5\times 2 & -5\times -1 & -5\times 2 \\
-5\times 5 & -5\times 3 & -5\times -1 \\
\end{array} \right]+\left[ \begin{array}{*{35}{l}}
-5\times -2 & -5\times 3 & -5\times 1 \\
-5\times 3 & -5\times -2 & -5\times 4 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
-10 & 5 & -10 \\
-25 & -15 & 5 \\
\end{array} \right]+\left[ \begin{array}{*{35}{l}}
10 & -15 & -5 \\
-15 & 10 & -20 \\
\end{array} \right]
\end{align}$
Now by adding the matrices as below, we get:
$\begin{align}
& -5\left( A+D \right)=\left[ \begin{array}{*{35}{l}}
-10 & 5 & -10 \\
-25 & -15 & 5 \\
\end{array} \right]+\left[ \begin{array}{*{35}{l}}
10 & -15 & -5 \\
-15 & 10 & -20 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
-10+10 & 5-15 & -10-5 \\
-25-15 & -15+10 & 5-20 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{l}}
0 & -10 & -15 \\
-40 & -5 & -15 \\
\end{array} \right]
\end{align}$
Thus, $-5\left( A+D \right)=\left[ \begin{array}{*{35}{l}}
0 & -10 & -15 \\
-40 & -5 & -15 \\
\end{array} \right]$