Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 851: 61

Answer

The values are $ x=\ 5\ \text{m and }y=\text{ 2}\ \text{m}$.

Work Step by Step

We start with: $\begin{align} & {{x}^{2}}-{{y}^{2}}=21\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{I} \right) \\ & 4x+2y=24\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{II} \right) \end{align}$ The substitution method is used to solve the system. Divide each term in equation (II) by 2 and then the value of $ y $ is, $\begin{align} & 2x+y=12 \\ & y=12-2x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{III} \right) \\ \end{align}$ Substitute the value of $ y=12-2x $ into equation (I). Then, $\begin{align} & {{x}^{2}}-{{\left( 12-2x \right)}^{2}}=21 \\ & {{x}^{2}}-\left( 144-48x+4{{x}^{2}} \right)=21 \\ & {{x}^{2}}-144+48x-4{{x}^{2}}-21=0 \\ & 3{{x}^{2}}+48x-165=0 \end{align}$ Now, further solve for $ x $. Then, $\begin{align} & {{x}^{2}}-16x+55=0 \\ & \left( x-5 \right)\left( x-11 \right)=0 \\ & x=5,11 \end{align}$ If $ x=5$, then, $\begin{align} & y=12-2(5) \\ & =12-10 \\ & =2 \end{align}$ Therefore, the solution set is $\left\{ \left( 5,5 \right),\left( 2,2 \right) \right\}$ Hence, the solution set of the system is $\left\{ \left( 5,5 \right),\left( 2,2 \right) \right\}$. Hence, the value of $ x=\ 5\ \text{m and }y=\text{ 2}\ \text{m}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.