Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 851: 45

Answer

The numbers are, $2\ \text{and 1}$, $2\ \text{ and }-1$, $-2\ \text{and 1}$ and $-2\ \text{ and }-\text{1}$

Work Step by Step

Let the numbers be $ x $ and $ y $ such that: $\begin{align} & {{x}^{2}}-{{y}^{2}}=3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{I} \right) \\ & 2{{x}^{2}}+{{y}^{2}}=9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{II} \right) \end{align}$ By adding equation (I) and equation (II): we get, $\begin{align} & {{x}^{2}}-{{y}^{2}}=3 \\ & \underline{2{{x}^{2}}+{{y}^{2}}=9} \\ & 3{{x}^{2}}=12 \\ & {{x}^{2}}=4 \\ \end{align}$ Now, $ x=\pm 2$ Substitute $ x=2$ in equation (II): $\begin{align} & 2{{\left( 2 \right)}^{2}}+{{y}^{2}}=9 \\ & {{y}^{2}}=1 \\ & y=\pm 1 \end{align}$ Substitute $ x=-2$ in equation (II): $\begin{align} & 2{{\left( -2 \right)}^{2}}+{{y}^{2}}=9 \\ & {{y}^{2}}=1 \\ & y=\pm 1 \end{align}$ Thus, the numbers are, $2\ \text{and 1}$, $2\ \text{ and }-1$, $-2\ \text{and 1}$ or $-2\ \text{ and }-\text{1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.