Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 851: 56

Answer

The exact location of the ship in the first quadrant is $\left( 1,1 \right)$

Work Step by Step

The provided equations of the paths are, $\begin{align} & 2{{y}^{2}}-{{x}^{2}}=1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{I} \right) \\ & 2{{x}^{2}}-{{y}^{2}}=1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{II} \right) \end{align}$ Multiply equation (I) by 2 and add equation (II). Therefore, $\begin{align} & -2{{x}^{2}}+4{{y}^{2}}=2 \\ & 2{{x}^{2}}-{{y}^{2}}=1 \\ & \overline{\begin{align} & 3{{y}^{2}}=3\,\,\,\,\,\,\,\,\, \\ & y=\pm 1 \\ \end{align}} \\ \end{align}$ Now, If $ y=1$ then, $\begin{align} & \,2{{x}^{2}}-1=1 \\ & 2{{x}^{2}}=2 \\ & {{x}^{2}}=1 \\ & x=\pm 1 \end{align}$ If $ y=-1$ Then, $\begin{align} & 2{{x}^{2}}-\left( -1 \right)=1 \\ & 2{{x}^{2}}+1=1 \\ & {{x}^{2}}=0 \\ & x=0 \\ \end{align}$ Here, the ship is located in the first quadrant, so take only $ x=1$ and $ y=1$. Thus, the ship’s coordinate in the first quadrant is $\left( 1,1 \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.