Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 851: 60

Answer

The length and width of the rug are 12 feet by 9 feet

Work Step by Step

Let us assume $ l $ be the length and $ w $ be the width of the rectangle such that: $\begin{align} & lw=108\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{I} \right) \\ & {{l}^{2}}+{{w}^{2}}={{15}^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{II} \right) \end{align}$ Solving equation (I): $ l=\frac{108}{w}$ (III) Substitute the value of $ l $ in equation (II). Then, $\begin{align} & \frac{{{108}^{2}}}{{{w}^{2}}}+{{w}^{2}}=225 \\ & 11664+{{w}^{4}}-225{{w}^{2}}=0 \\ & \left( {{w}^{2}}-81 \right)\left( {{w}^{2}}-144 \right)=0 \end{align}$ Now, $\left( {{w}^{2}}-81 \right)=0\ \text{ or }\left( {{w}^{2}}-144 \right)=0$. All the possible values of $ w $ are $ w=\pm 9,\pm 12$. Negative value are not possible. Therefore, $ w=9,12$ If $ w=9$ then, $\begin{align} & l=\frac{108}{9} \\ & =12 \end{align}$ If $ w=12$ then, $\begin{align} & l=\frac{108}{12} \\ & =9 \end{align}$ Thus, the dimensions are 12 feet by 9 feet.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.