Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 851: 59

Answer

The length and width are 8 inches by 6 inches

Work Step by Step

Let us assume $ L $ be the length and $ W $ be the width of the television viewing area such that: $\begin{align} & {{L}^{2}}+{{W}^{2}}=100\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{I} \right) \\ & LW=48\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{II} \right) \end{align}$ The substitution method is used to solve the system. Now, the value of $ L $ from the second equation is: $ L=\frac{48}{W}$ (III) Substitute the value of L in equation (I): $\begin{align} & \frac{{{48}^{2}}}{{{W}^{2}}}+{{W}^{2}}=100 \\ & 2804+{{W}^{4}}=100{{W}^{2}} \\ & {{W}^{4}}-100{{W}^{2}}+2304=0 \\ & \left( {{W}^{2}}-36 \right)\left( {{W}^{2}}-64 \right)=0 \end{align}$ Now, ${{W}^{2}}-36=0$ Or, ${{W}^{2}}-64=0$ $$ If ${{W}^{2}}=36$ then $ W=\pm 6$ and if ${{W}^{2}}=64$ then, $ W=\pm 8$. The width cannot be negative so, $ W=6,\ 8$. If $ W=6$ then, $\begin{align} & L=\frac{48}{6} \\ & =8 \end{align}$ If $ W=8$ Then, $\begin{align} & L=\frac{48}{8} \\ & =6 \end{align}$ Thus, the dimensions are 8 inches by 6 inches.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.