Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 851: 49

Answer

The required solution is $\left\{ \left( -3,0 \right),\left( 2,20 \right),\left( -2,4 \right) \right\}$

Work Step by Step

The given equations are, $\begin{align} & -4x+y=12\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{I} \right) \\ & y={{x}^{3}}+3{{x}^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{II} \right) \end{align}$ Solve the equation (I): Put the value of $ y={{x}^{3}}+3{{x}^{2}}$ in equation (I) $\begin{align} & -4x+\left( {{x}^{3}}+3{{x}^{2}} \right)=12 \\ & {{x}^{3}}+3{{x}^{2}}-4x-12=0 \\ & {{x}^{2}}\left( x+3 \right)-4\left( x+4 \right)=0 \\ & \left( {{x}^{2}}-4 \right)\left( x+3 \right)=0 \end{align}$ On solving further: $\begin{align} & \left( x+3 \right)\left( x-2 \right)\left( x+2 \right)=0 \\ & x=-3,x=2,x=-2 \\ \end{align}$ Substitute the value of $ x=-3,x=2,x=-2$ into equation (II): For, $\begin{align} & x=-3 \\ & y={{\left( -3 \right)}^{3}}+3\left( -{{3}^{2}} \right) \\ & =-27+27 \\ & =0 \end{align}$ For $\begin{align} & x=2 \\ & y={{\left( 2 \right)}^{3}}+3{{\left( 2 \right)}^{2}} \\ & =8+12 \\ & =20 \end{align}$ For $\begin{align} & x=-2 \\ & y={{\left( -2 \right)}^{3}}+3{{\left( -2 \right)}^{2}} \\ & =-8+12 \\ & =0 \end{align}$ Thus, the solution set of system is $\left\{ \left( -3,0 \right),\left( 2,20 \right),\left( -2,4 \right) \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.