Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 850: 35

Answer

The solution is $\left\{ \left( 0,0 \right),\left( -1,1 \right) \right\}$

Work Step by Step

The given equations are, $\begin{align} & {{x}^{3}}+y=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{I} \right) \\ & {{x}^{2}}-y=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( \text{II} \right) \\ \end{align}$ For solving the equation use the addition method: Add equation (I) and (II) to eliminate y: $\begin{align} & {{x}^{3}}+y=0 \\ & \underline{{{x}^{2}}-y=0} \\ & {{x}^{3}}+{{x}^{2}}=0 \\ \end{align}$ ${{x}^{2}}\left( x+1 \right)=0$ (III) ${{x}^{2}}=0$ or $ x+1=0$ $ x=0$ or $ x=-1$ If $ x=0$ then substitute $ x=0$ in equation (I): $\begin{align} & {{\left( 0 \right)}^{3}}+y=0 \\ & y=0 \end{align}$ If $ x=-1$ then substitute $ x=-1$ in equation (I): $\begin{align} & {{\left( -1 \right)}^{3}}+y=0 \\ & y=1 \end{align}$ Therefore, the solution set is $\left\{ \left( 0,0 \right),\left( -1,1 \right) \right\}$ Hence, the solution set of the system is, $\left\{ \left( 0,0 \right),\left( -1,1 \right) \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.