Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 850: 26

Answer

The solutions of the equations ${{x}^{2}}+{{y}^{2}}=5$ and ${{x}^{2}}+{{\left( y-8 \right)}^{2}}=41$ are $\left( \sqrt{\frac{31}{16}},\frac{7}{4} \right)$ and$\left( -\sqrt{\frac{31}{16}},\frac{7}{4} \right)$ .

Work Step by Step

Let us consider that the equations are as follows: ${{x}^{2}}+{{y}^{2}}=5$ (I) ${{x}^{2}}+{{\left( y-8 \right)}^{2}}=41$ (II) Now, demonstrate the following steps as follows: Step 1: By eliminating the variable ${{x}^{2}}$, multiply −1 in the above equation (I) by operating the addition method in equations (I) and (II) and simplify as given below: $\begin{align} & -{{x}^{2}}-{{y}^{2}}+\left( {{x}^{2}}+{{\left( y-8 \right)}^{2}} \right)=-5+41 \\ & {{\left( y-8 \right)}^{2}}-{{y}^{2}}=36 \\ & {{y}^{2}}+64-16y-{{y}^{2}}=36 \\ & 28=16y \end{align}$ Simplify further, $y=\frac{7}{4}$ Therefore, $y=\frac{7}{4}$ is the simplified solution of both the equations. Step 2: Substitute the value of $y$ in the equation (I) to find out the value of $x$ and solve as given below: For $y=\frac{7}{4}$, $\begin{align} & {{x}^{2}}+{{y}^{2}}=5 \\ & {{x}^{2}}+{{\left( \frac{7}{4} \right)}^{2}}=5 \\ & {{x}^{2}}+\frac{49}{16}=5 \\ & {{x}^{2}}=5-\frac{49}{16} \end{align}$ Simplify further, $\begin{align} & {{x}^{2}}=\frac{80-49}{16} \\ & {{x}^{2}}=\frac{31}{16} \end{align}$ So, $x=\pm \sqrt{\frac{31}{16}}$ is the simplified solution of this equation. Step 3: And verify the values of $x$ and $y$ in both of the equations. Now start by taking the pair $\left( \sqrt{\frac{31}{16}},\frac{7}{4} \right)$, and put $x=\pm \sqrt{\frac{31}{16}}$ and $y=\frac{7}{4}$. $\begin{align} & {{x}^{2}}+{{y}^{2}}=5 \\ & {{\left( \sqrt{\frac{31}{16}} \right)}^{2}}+{{\left( \frac{7}{4} \right)}^{2}}=5 \\ & \frac{31}{16}+\frac{49}{16}=5 \\ & \frac{80}{16}=5 \end{align}$ Simplify further, $5=5$ Thus, the values satisfy the equation. And, $\begin{align} & {{x}^{2}}+{{\left( y-8 \right)}^{2}}=41 \\ & {{\left( \sqrt{\frac{31}{16}} \right)}^{2}}+{{\left( \frac{7}{4}-8 \right)}^{2}}=41 \\ & \frac{31}{16}+\frac{625}{16}=41 \\ & \frac{656}{16}=41 \end{align}$ Simplify further, $41=41$ Thus, the values satisfy the equation. Now, start the check by $\left( -\sqrt{\frac{31}{16}},\frac{7}{4} \right)$, and put $x=-\sqrt{\frac{31}{16}}$ and $y=\sqrt{\frac{7}{4}}$. $\begin{align} & {{x}^{2}}+{{y}^{2}}=5 \\ & {{\left( -\sqrt{\frac{31}{16}} \right)}^{2}}+{{\left( \frac{7}{4} \right)}^{2}}=5 \\ & \frac{31}{16}+\frac{49}{16}=5 \\ & \frac{80}{16}=5 \end{align}$ Simplify further, $5=5$ Thus, the values satisfy the equation. And, $\begin{align} & {{x}^{2}}+{{\left( y-8 \right)}^{2}}=41 \\ & {{\left( -\sqrt{\frac{31}{16}} \right)}^{2}}+{{\left( \frac{7}{4}-8 \right)}^{2}}=41 \\ & \frac{31}{16}+\frac{625}{16}=41 \\ & \frac{656}{16}=41 \end{align}$ Simplify further, $41=41$ Thus, the values satisfy the equation. Hence, the points $\left( \sqrt{\frac{31}{16}},\frac{7}{4} \right)$ and $\left( -\sqrt{\frac{31}{16}},\frac{7}{4} \right)$ are the solutions of the system.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.