Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 850: 28

Answer

The solutions of the equations ${{x}^{2}}-2y=8$ and ${{x}^{2}}+{{y}^{2}}=16$ are $\left( \sqrt{12},2 \right),\left( -\sqrt{12},2 \right)$ and $\left( 0,-4 \right)$.

Work Step by Step

Let us consider the equations as follows: $\begin{align} & {{x}^{2}}-2y=8 \\ & {{x}^{2}}+{{y}^{2}}=16 \\ \end{align}$ Also, consider these equations as (I) and (II). Now, demonstrate the steps as follows: Step 1: By eliminating the variable ${{x}^{2}}$, multiply $-1$ in equation (I) and using the addition method in equations (I) and (II) simplify as given below: $\begin{align} & -{{x}^{2}}+2y+\left( {{x}^{2}}+{{y}^{2}} \right)=-8+16 \\ & {{y}^{2}}+2y=8 \\ & {{y}^{2}}+2y-8=0 \\ & {{y}^{2}}+4y-2y-8=0 \end{align}$ Simplify further, $\begin{align} & y\left( y+4 \right)-2\left( y+4 \right)=0 \\ & \left( y-2 \right)\left( y+4 \right)=0 \end{align}$ Therefore, $ y=2,-4$ are the solutions of both the equations. Step 2: Substitute the value of $ y $ in equation (I) to find out the value of $ x $ and simplify as follows: For $ y=2$, $\begin{align} & {{x}^{2}}-2y=8 \\ & {{x}^{2}}-2\left( 2 \right)=8 \\ & {{x}^{2}}-4=8 \\ & {{x}^{2}}=12 \end{align}$ Therefore, $ x=\pm \sqrt{12}$ is the solution of this equation. For $ y=-4$, $\begin{align} & {{x}^{2}}-2y=8 \\ & {{x}^{2}}-2\left( -4 \right)=8 \\ & {{x}^{2}}+8=8 \\ & {{x}^{2}}=0 \end{align}$ Threfore, $ x=0$ is the solution of this equation. Step 3: And verify the values of $ x $ and $ y $ in both of the equations. Now start by taking the pair $\left( \pm \sqrt{12},2 \right)$, and put $ x=\pm \sqrt{12}$ and $ y=2$. $\begin{align} & {{x}^{2}}-2y=8 \\ & {{\left( \pm \sqrt{12} \right)}^{2}}-2\times 2=8 \\ & 12-4=8 \\ & 8=8 \end{align}$ Thus, the values satisfy the equation. And, $\begin{align} & {{x}^{2}}+{{y}^{2}}=16 \\ & {{\left( \pm \sqrt{12} \right)}^{2}}+{{2}^{2}}=16 \\ & 12+4=16 \\ & 16=16 \end{align}$ Thus, the values satisfy the equation. Now, check by $\left( 0,-4 \right)$, and put $ x=0$ and $ y=-4$. $\begin{align} & {{x}^{2}}-2y=8 \\ & {{\left( 0 \right)}^{2}}-2\times \left( -4 \right)=8 \\ & 0+8=8 \\ & 8=8 \end{align}$ Thus, the values satisfy the equation. And, $\begin{align} & {{x}^{2}}+{{y}^{2}}=16 \\ & {{0}^{2}}+{{\left( -4 \right)}^{2}}=16 \\ & 0+16=16 \\ & 16=16 \end{align}$ Thus, the values satisfy the equation. Hence, the points $\left( \sqrt{12},2 \right),\ \left( -\sqrt{12},2 \right)$, and $\left( 0,-4 \right)$ are the required solutions of the system.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.