Answer
The solutions of the equations ${{x}^{2}}-2y=8$ and ${{x}^{2}}+{{y}^{2}}=16$ are $\left( \sqrt{12},2 \right),\left( -\sqrt{12},2 \right)$ and $\left( 0,-4 \right)$.
Work Step by Step
Let us consider the equations as follows:
$\begin{align}
& {{x}^{2}}-2y=8 \\
& {{x}^{2}}+{{y}^{2}}=16 \\
\end{align}$
Also, consider these equations as (I) and (II).
Now, demonstrate the steps as follows:
Step 1:
By eliminating the variable ${{x}^{2}}$, multiply $-1$ in equation (I) and using the addition method in equations (I) and (II) simplify as given below:
$\begin{align}
& -{{x}^{2}}+2y+\left( {{x}^{2}}+{{y}^{2}} \right)=-8+16 \\
& {{y}^{2}}+2y=8 \\
& {{y}^{2}}+2y-8=0 \\
& {{y}^{2}}+4y-2y-8=0
\end{align}$
Simplify further,
$\begin{align}
& y\left( y+4 \right)-2\left( y+4 \right)=0 \\
& \left( y-2 \right)\left( y+4 \right)=0
\end{align}$
Therefore, $ y=2,-4$ are the solutions of both the equations.
Step 2:
Substitute the value of $ y $ in equation (I) to find out the value of $ x $ and simplify as follows:
For $ y=2$,
$\begin{align}
& {{x}^{2}}-2y=8 \\
& {{x}^{2}}-2\left( 2 \right)=8 \\
& {{x}^{2}}-4=8 \\
& {{x}^{2}}=12
\end{align}$
Therefore, $ x=\pm \sqrt{12}$ is the solution of this equation.
For $ y=-4$,
$\begin{align}
& {{x}^{2}}-2y=8 \\
& {{x}^{2}}-2\left( -4 \right)=8 \\
& {{x}^{2}}+8=8 \\
& {{x}^{2}}=0
\end{align}$
Threfore, $ x=0$ is the solution of this equation.
Step 3:
And verify the values of $ x $ and $ y $ in both of the equations. Now start by taking the pair $\left( \pm \sqrt{12},2 \right)$, and put $ x=\pm \sqrt{12}$ and $ y=2$.
$\begin{align}
& {{x}^{2}}-2y=8 \\
& {{\left( \pm \sqrt{12} \right)}^{2}}-2\times 2=8 \\
& 12-4=8 \\
& 8=8
\end{align}$
Thus, the values satisfy the equation.
And,
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=16 \\
& {{\left( \pm \sqrt{12} \right)}^{2}}+{{2}^{2}}=16 \\
& 12+4=16 \\
& 16=16
\end{align}$
Thus, the values satisfy the equation.
Now, check by $\left( 0,-4 \right)$, and put $ x=0$ and $ y=-4$.
$\begin{align}
& {{x}^{2}}-2y=8 \\
& {{\left( 0 \right)}^{2}}-2\times \left( -4 \right)=8 \\
& 0+8=8 \\
& 8=8
\end{align}$
Thus, the values satisfy the equation.
And,
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=16 \\
& {{0}^{2}}+{{\left( -4 \right)}^{2}}=16 \\
& 0+16=16 \\
& 16=16
\end{align}$
Thus, the values satisfy the equation.
Hence, the points $\left( \sqrt{12},2 \right),\ \left( -\sqrt{12},2 \right)$, and $\left( 0,-4 \right)$ are the required solutions of the system.