Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 850: 30

Answer

The solution is, $\left\{ \left( 4,0 \right),\left( -3,\sqrt{7} \right)\text{ and }\left( -3,-\sqrt{7} \right) \right\}$

Work Step by Step

Let us consider the given equation: $ x+{{y}^{2}}=4$ …… (I) ${{x}^{2}}+{{y}^{2}}=16$ …… (II) Substract equation (I) from equation (II): $\begin{align} & {{x}^{2}}+{{y}^{2}}=16 \\ & x+{{y}^{2}}=4 \\ & \underline{-\text{ }-\text{ }-} \\ & {{x}^{2}}-x=12 \\ \end{align}$ Further simplify, $\begin{align} & {{x}^{2}}-x-12=0 \\ & x\left( x-4 \right)+3\left( x-4 \right)=0 \\ & \left( x-4 \right)\left( x+3 \right)=0 \\ & x=4,-3\, \end{align}$ Substitute $ x=4$ in equation (I): $\begin{align} & 4+{{y}^{2}}=4 \\ & {{y}^{2}}=0 \\ & y=0 \end{align}$ Substitute $ x=-3$ in equation (II): $\begin{align} & -3+{{y}^{2}}=4 \\ & {{y}^{2}}=7 \\ & y=\pm \sqrt{7} \end{align}$ Thus, the solution is $\left\{ \left( 4,0 \right),\left( -3,\sqrt{7} \right)\text{ and }\left( -3,-\sqrt{7} \right) \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.