Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 850: 32

Answer

The solution is $\left\{ \left( 2,2 \right),\left( -2,-2 \right),\left( 4,1 \right),\left( -4,-1 \right) \right\}$

Work Step by Step

The given equations are, ${{x}^{2}}+4{{y}^{2}}=20$ (I) And $ xy=4$ (II) From equation (II): $ y=\frac{4}{x}$ Substitute $ y=\frac{4}{x}$ in equation (I): $\begin{align} & {{x}^{2}}-4{{\left( \frac{4}{x} \right)}^{2}}=20 \\ & {{x}^{4}}-20{{x}^{2}}+64=0 \\ & \left( {{x}^{2}}-4 \right)\left( {{x}^{2}}-16 \right)=0 \\ & x=\pm 2,\pm 4\, \end{align}$ Substitute $ x=2$ in equation (II): $\begin{align} & 2y=4 \\ & y=2 \end{align}$ Substitute $ x=-2$ in equation (II): $\begin{align} & -2y=4 \\ & y=-2 \end{align}$ Substitute $ x=4$ in equation (II): $ y=1$ Substitute $ x=-4$ in equation (II): $ y=-1$ Thus, the solution is $\left\{ \left( 2,2 \right),\left( -2,-2 \right),\left( 4,1 \right),\left( -4,-1 \right) \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.