Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 850: 24

Answer

The solutions of the stated algebraic equations are$\left( \sqrt{5},\sqrt{2} \right),\left( \sqrt{5},-\sqrt{2} \right),\left( -\sqrt{5},\sqrt{2} \right)$ and$\left( -\sqrt{5},-\sqrt{2} \right)$.

Work Step by Step

Let us consider the equations are as given below: $16{{x}^{2}}-4{{y}^{2}}-72=0$ (I) ${{x}^{2}}-{{y}^{2}}-3=0$ (II) Now, demonstrate the following steps as given below: Step 1: If necessary, multiply either of the equations or both equations by a significant number so that the sum of the coefficients of ${{x}^{2}}$ or the sum of the coefficients of ${{y}^{2}}$ is zero. Thus, multiply the equation (II) by $4$ so that the addition of the coefficients of ${{y}^{2}}$ becomes zero. $\begin{align} & 16{{x}^{2}}-4{{y}^{2}}-72+\left( -4{{x}^{2}}+4{{y}^{2}}+12 \right)=0+0 \\ & 12{{x}^{2}}-60=0 \\ & 12{{x}^{2}}=60 \\ & {{x}^{2}}=5 \end{align}$ This gives: $\begin{align} & {{x}^{2}}-5=0 \\ & (x-\sqrt{5})(x+\sqrt{5})=0 \\ & x\pm \sqrt{5}=0 \\ \end{align}$ So, $x=\pm \sqrt{5}$ are the two solutions of both equations. Step 2: Substitute the value of $x$ in equation (I) to find out the value of $y$ as follows: For$x=+\sqrt{5}\,\text{or}\,-\sqrt{5}$: $\begin{align} & 16{{x}^{2}}-4{{y}^{2}}-72=0 \\ & 16{{\left( \pm \sqrt{5} \right)}^{2}}-4{{y}^{2}}-72=0 \\ & 16\times 5-4{{y}^{2}}-72=0 \\ & 80-4{{y}^{2}}-72=0 \end{align}$ It gives: $\begin{align} & 8-4{{y}^{2}}=0 \\ & 8=4{{y}^{2}} \\ & 2={{y}^{2}} \end{align}$ Therefore, $\begin{align} & {{y}^{2}}-2=0 \\ & (y-\sqrt{2})(y+\sqrt{2})=0 \\ & y\pm \sqrt{2}=0 \end{align}$ So, $y=\pm \sqrt{2}$ are the two solutions of this equation. Step 3: And verify the values of $x$ and $y$ in both of the equations: Now start by taking the pair $\left( \pm \sqrt{5},\pm \sqrt{2} \right)$, and put $x=+\sqrt{5}\text{or}-\sqrt{5}$ and $y=+\sqrt{2}\text{or}-\sqrt{2}$ . And, $\begin{align} & {{x}^{2}}-{{y}^{2}}-3=0 \\ & {{\left( \sqrt{5} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}-3=0 \\ & 5-2-3=0 \\ & 0=0 \end{align}$ Is true. $\begin{align} & {{x}^{2}}-{{y}^{2}}-3=0 \\ & {{\left( \sqrt{5} \right)}^{2}}-{{\left( -\sqrt{2} \right)}^{2}}-3=0 \\ & 5-2-3=0 \\ & 0=0 \end{align}$ Is true $\begin{align} & {{x}^{2}}-{{y}^{2}}-3=0 \\ & {{\left( -\sqrt{5} \right)}^{2}}-{{\left( -\sqrt{2} \right)}^{2}}-3=0 \\ & 5-2-3=0 \\ & 0=0 \end{align}$ Is true $\begin{align} & {{x}^{2}}-{{y}^{2}}-3=0 \\ & {{\left( -\sqrt{5} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}-3=0 \\ & 5-2-3=0 \\ & 0=0 \end{align}$ Is true Hence, the points $\left( \sqrt{5},\sqrt{2} \right),\left( \sqrt{5},-\sqrt{2} \right),\left( -\sqrt{5},\sqrt{2} \right)$ and $\left( -\sqrt{5},-\sqrt{2} \right)$ are the required solutions of the system.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.