Answer
The solutions of the stated algebraic equations are$\left( \sqrt{5},\sqrt{2} \right),\left( \sqrt{5},-\sqrt{2} \right),\left( -\sqrt{5},\sqrt{2} \right)$ and$\left( -\sqrt{5},-\sqrt{2} \right)$.
Work Step by Step
Let us consider the equations are as given below:
$16{{x}^{2}}-4{{y}^{2}}-72=0$ (I)
${{x}^{2}}-{{y}^{2}}-3=0$ (II)
Now, demonstrate the following steps as given below:
Step 1:
If necessary, multiply either of the equations or both equations by a significant number so that the sum of the coefficients of ${{x}^{2}}$ or the sum of the coefficients of ${{y}^{2}}$ is zero.
Thus, multiply the equation (II) by $4$ so that the addition of the coefficients of ${{y}^{2}}$ becomes zero.
$\begin{align}
& 16{{x}^{2}}-4{{y}^{2}}-72+\left( -4{{x}^{2}}+4{{y}^{2}}+12 \right)=0+0 \\
& 12{{x}^{2}}-60=0 \\
& 12{{x}^{2}}=60 \\
& {{x}^{2}}=5
\end{align}$
This gives:
$\begin{align}
& {{x}^{2}}-5=0 \\
& (x-\sqrt{5})(x+\sqrt{5})=0 \\
& x\pm \sqrt{5}=0 \\
\end{align}$
So, $x=\pm \sqrt{5}$ are the two solutions of both equations.
Step 2:
Substitute the value of $x$ in equation (I) to find out the value of $y$ as follows:
For$x=+\sqrt{5}\,\text{or}\,-\sqrt{5}$:
$\begin{align}
& 16{{x}^{2}}-4{{y}^{2}}-72=0 \\
& 16{{\left( \pm \sqrt{5} \right)}^{2}}-4{{y}^{2}}-72=0 \\
& 16\times 5-4{{y}^{2}}-72=0 \\
& 80-4{{y}^{2}}-72=0
\end{align}$
It gives:
$\begin{align}
& 8-4{{y}^{2}}=0 \\
& 8=4{{y}^{2}} \\
& 2={{y}^{2}}
\end{align}$
Therefore,
$\begin{align}
& {{y}^{2}}-2=0 \\
& (y-\sqrt{2})(y+\sqrt{2})=0 \\
& y\pm \sqrt{2}=0
\end{align}$
So, $y=\pm \sqrt{2}$ are the two solutions of this equation.
Step 3:
And verify the values of $x$ and $y$ in both of the equations: Now start by taking the pair $\left( \pm \sqrt{5},\pm \sqrt{2} \right)$, and put $x=+\sqrt{5}\text{or}-\sqrt{5}$ and $y=+\sqrt{2}\text{or}-\sqrt{2}$ .
And,
$\begin{align}
& {{x}^{2}}-{{y}^{2}}-3=0 \\
& {{\left( \sqrt{5} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}-3=0 \\
& 5-2-3=0 \\
& 0=0
\end{align}$
Is true.
$\begin{align}
& {{x}^{2}}-{{y}^{2}}-3=0 \\
& {{\left( \sqrt{5} \right)}^{2}}-{{\left( -\sqrt{2} \right)}^{2}}-3=0 \\
& 5-2-3=0 \\
& 0=0
\end{align}$
Is true
$\begin{align}
& {{x}^{2}}-{{y}^{2}}-3=0 \\
& {{\left( -\sqrt{5} \right)}^{2}}-{{\left( -\sqrt{2} \right)}^{2}}-3=0 \\
& 5-2-3=0 \\
& 0=0
\end{align}$
Is true
$\begin{align}
& {{x}^{2}}-{{y}^{2}}-3=0 \\
& {{\left( -\sqrt{5} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}-3=0 \\
& 5-2-3=0 \\
& 0=0
\end{align}$
Is true
Hence, the points $\left( \sqrt{5},\sqrt{2} \right),\left( \sqrt{5},-\sqrt{2} \right),\left( -\sqrt{5},\sqrt{2} \right)$ and $\left( -\sqrt{5},-\sqrt{2} \right)$ are the required solutions of the system.