Answer
$\dfrac{7}{25}$
Work Step by Step
Suppose $\theta =\tan^{-1} (\dfrac{7}{24})$
This gives: $\tan \theta=\dfrac{7}{24}$
Since, $ r=\sqrt {x^2+y^2}$
This implies that $ x=\sqrt {r^2-y^2}=\sqrt {(24)^2+(7)^2}=25$
Therefore, we have $\sin \theta =\sin [\tan^{-1} (\dfrac{7}{24})]=\dfrac{7}{25}$