Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.4 - Trigonometric Functions of Any Angle - Exercise Set - Page 576: 98

Answer

The exact value of the average rate of change of $g$ in the given interval is $\frac{2\sqrt{2}-4}{\pi }$.

Work Step by Step

The slope of the line through the points $\left( {{x}_{1}},g\left( {{x}_{1}} \right) \right)$ and $\left( {{x}_{2}},g\left( {{x}_{2}} \right) \right)$ is defined as the average rate of change. Let us consider the following equation of slope $m$. $m=\frac{g\left( {{x}_{2}} \right)-g\left( {{x}_{1}} \right)}{{{x}_{2}}-{{x}_{1}}}$ Put $\pi $ for ${{x}_{2}}$ and $\frac{3\pi }{4}$ for ${{x}_{1}}$. $m=\frac{g\left( \pi \right)-g\left( \frac{3\pi }{4} \right)}{\pi -\frac{3\pi }{4}}$ And the condition is $g\left( x \right)=\cos x$ Now, apply the condition in the above equation of $m$. $m=\frac{\cos \left( \pi \right)-\cos \left( \frac{3\pi }{4} \right)}{\pi -\frac{3\pi }{4}}$ …… (1) The angle $\frac{3\pi }{4}$ lies between $\frac{\pi }{2}$ and $\pi $, in quadrant II. Calculate the reference angle as follows $\begin{align} & {\theta }'=\frac{\pi }{2}-\frac{3\pi }{4} \\ & =\frac{4\pi -3\pi }{4} \\ & =\frac{\pi }{4} \end{align}$ Therefore, $\cos \frac{\pi }{4}=\frac{\sqrt{2}}{2}$ Here, the cosine is negative in quadrant II. So, $\cos \frac{3\pi }{4}=-\cos \frac{\pi }{4}$ Put $\frac{\sqrt{2}}{2}$ for $\cos \frac{\pi }{4}$. $\cos \frac{5\pi }{4}=-\frac{\sqrt{2}}{2}$ Put $-1$ for $\cos \pi $ and $-\frac{\sqrt{2}}{2}$ for $\cos \frac{3\pi }{4}$ in equation (1). $\begin{align} & m=\frac{\cos \left( \pi \right)-\cos \left( \frac{3\pi }{4} \right)}{\pi -\frac{3\pi }{4}} \\ & =\frac{\left( -1 \right)-\left( -\frac{\sqrt{2}}{2} \right)}{\frac{4\pi -3\pi }{4}} \\ & =\frac{-1+\frac{\sqrt{2}}{2}}{\frac{\pi }{4}} \end{align}$ Further solve, $\begin{align} & m=\left( -1+\frac{\sqrt{2}}{2} \right)\frac{4}{\pi } \\ & =\frac{-4+\frac{\sqrt{2}}{2}\left( 4 \right)}{\pi } \\ & =\frac{2\sqrt{2}-4}{\pi } \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.