Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.4 - Trigonometric Functions of Any Angle - Exercise Set - Page 576: 91

Answer

The exact value of the expression is $-\frac{3}{2}$.

Work Step by Step

Consider the following equation. $x=\sin \frac{3\pi }{2}\tan \left( -\frac{15\pi }{4} \right)-\cos \left( -\frac{5\pi }{3} \right)$ …… (1) In the given expression, if there are angles greater than $2\pi $ or less than $-2\pi $, first find the positive co-terminal angle of that angle. Then, find the reference angle of the co-terminal angle. Finally, evaluate the trigonometric function at the reference angle with the correct sign. The measure of $\left( -\frac{15\pi }{4} \right)$ is less than $-2\pi $. Add $4\pi $ to $\left( -\frac{15\pi }{4} \right)$, to get a positive co-terminal angle less than $2\pi $. $\begin{align} & \alpha =\left( -\frac{15\pi }{4} \right)+4\pi \\ & =\frac{-15\pi +16\pi }{4} \\ & =\frac{\pi }{4} \end{align}$ Hence, $\tan \frac{\pi }{4}=1$ Tangent is positive in quadrant I. Therefore, $\tan \left( -\frac{15\pi }{4} \right)=\tan \frac{\pi }{4}$ Substitute $1$ for $\tan \frac{\pi }{4}$. $\tan \left( -\frac{15\pi }{4} \right)=1$ Add $2\pi $ to $\frac{-5\pi }{3}$, to find the reference angle. $\begin{align} & {\alpha }'=\left( -\frac{5\pi }{3} \right)+2\pi \\ & =\frac{-5\pi +6\pi }{3} \\ & =\frac{\pi }{3} \end{align}$ Hence, $\cos \frac{\pi }{3}=\frac{1}{2}$ Cosecant is positive in quadrant I. Therefore, $\cos \frac{-5\pi }{3}=\cos \frac{\pi }{3}$ Substitute $\frac{1}{2}$ for $\cos \frac{\pi }{3}$ $\cos \frac{-5\pi }{3}=\frac{1}{2}$ Substitute $\left( -1 \right)$ for $\sin \frac{3\pi }{2}$ , $1$ for $\tan \left( -\frac{15\pi }{4} \right)$ and $\frac{1}{2}$ for $\cos \frac{-5\pi }{3}$ in equation (1). $\begin{align} & x=\sin \frac{3\pi }{2}\tan \left( -\frac{15\pi }{4} \right)-\cos \left( -\frac{5\pi }{4} \right) \\ & =\left( -1 \right)\left( 1 \right)-\left( \frac{1}{2} \right) \\ & =\frac{-2-1}{2} \\ & =-\frac{3}{2} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.