Answer
The two values of $\theta $ are $\frac{2\pi }{3}$ and $\frac{5\pi }{3}$.
Work Step by Step
We have the given expression: $\tan \theta =-\sqrt{3}$.
Here, the reference angle is $\frac{\pi }{3}$ and $\theta $ lies in the quadrant II or IV.
Consider: The angle $\theta $ lies in the quadrant II.
$\begin{align}
& \theta =\pi -\frac{\pi }{3} \\
& =\frac{3\pi -\pi }{3} \\
& =\frac{2\pi }{3}
\end{align}$
Consider: The angle $\theta $ lies in the quadrant IV.
$\begin{align}
& \theta =2\pi -\frac{\pi }{3} \\
& =\frac{6\pi -\pi }{3} \\
& =\frac{5\pi }{3}
\end{align}$