Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.4 - Trigonometric Functions of Any Angle - Exercise Set - Page 576: 87

Answer

The exact value of the expression is $\frac{1-\sqrt{3}}{2}$.

Work Step by Step

Consider the following equation. $x=\sin \frac{\pi }{3}\cos \pi -\cos \frac{\pi }{3}\sin \frac{3\pi }{2}$ The values of the trigonometric functions are: $\begin{align} & \sin \frac{\pi }{3}=\frac{\sqrt{3}}{2} \\ & \cos \pi =1 \\ & \cos \frac{\pi }{3}=\frac{1}{2} \\ & \sin \frac{3\pi }{2}=-1 \end{align}$ Now, substitute $\frac{\sqrt{3}}{2}$ for $\sin \frac{\pi }{3}$ , $-1$ for $\cos \pi $ , $\frac{1}{2}$ for $\cos \frac{\pi }{3}$ and $-1$ for $\sin \frac{3\pi }{2}$. $\begin{align} & x=\frac{\sqrt{3}}{2}\left( -1 \right)-\left( \frac{1}{2} \right)\left( -1 \right) \\ & =-\frac{\sqrt{3}}{2}+\frac{1}{2} \\ & =\frac{-\sqrt{3}+1}{2} \\ & =\frac{1-\sqrt{3}}{2} \end{align}$ The exact value of the expression is $\frac{1-\sqrt{3}}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.