Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.4 - Trigonometric Functions of Any Angle - Exercise Set - Page 576: 93

Answer

The exact value of the expression is: $-\left( \frac{1+\sqrt{3}}{2} \right)$.

Work Step by Step

Let us consider the following equation: $y=f\left( \frac{4\pi }{3}+\frac{\pi }{6} \right)+f\left( \frac{4\pi }{3} \right)+f\left( \frac{\pi }{6} \right)$ The condition is $f\left( x \right)=\sin x$ Apply the condition in equation $y$ as follows: $\begin{align} & y=\sin \left( \frac{4\pi }{3}+\frac{\pi }{6} \right)+\sin \left( \frac{4\pi }{3} \right)+\sin \left( \frac{\pi }{6} \right) \\ & =\sin \left( \frac{8\pi +\pi }{6} \right)+\sin \left( \frac{4\pi }{3} \right)+\sin \left( \frac{\pi }{6} \right) \\ & =\sin \left( \frac{9\pi }{6} \right)+\sin \left( \frac{4\pi }{3} \right)+\sin \left( \frac{\pi }{6} \right) \end{align}$ Solve further as follows: $y=\sin \left( \frac{3\pi }{2} \right)+\sin \left( \frac{4\pi }{3} \right)+\sin \left( \frac{\pi }{6} \right)$ …… (1) The angle $\frac{4\pi }{3}$ lies between $\pi $ and $\frac{3\pi }{2}$, in the quadrant III. Calculate the reference angle as follows: $\begin{align} & {\theta }'=\frac{4\pi }{3}-\pi \\ & =\frac{4\pi -3\pi }{3} \\ & =\frac{\pi }{3} \end{align}$ Therefore, $\sin \frac{4\pi }{3}=\frac{\sqrt{3}}{2}$ Here, the sine is negative in quadrant III. Therefore, $\sin \frac{4\pi }{3}=-\sin \frac{\pi }{3}$ Put $\frac{\sqrt{3}}{2}$ for $\sin \frac{\pi }{3}$ as follows: $\sin \frac{4\pi }{3}=-\frac{\sqrt{3}}{2}$ Put $-1$ for $\sin \left( \frac{3\pi }{2} \right)$ , $-\frac{\sqrt{3}}{2}$ for $\sin \frac{4\pi }{3}$ , and $\frac{1}{2}$ for $\sin \left( \frac{\pi }{6} \right)$ in equation (1) as follows: $\begin{align} & y=\left( -1 \right)+\left( -\frac{\sqrt{3}}{2} \right)+\left( \frac{1}{2} \right) \\ & =\frac{-2-\sqrt{3}+1}{2} \\ & =\frac{-1-\sqrt{3}}{2} \\ & =-\left( \frac{1+\sqrt{3}}{2} \right) \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.