Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.4 - Trigonometric Functions of Any Angle - Exercise Set - Page 575: 8

Answer

The six trigonometric functions of $\theta $ for point $\left( -1,-3 \right)$ are, $\sin \theta =-\frac{3\sqrt{10}}{\sqrt{10}},\cos \theta =-\frac{\sqrt{10}}{10},\tan \theta =3,\csc \theta =-\frac{\sqrt{10}}{3},\sec \theta =-\sqrt{10}$ and $\cot \theta =\frac{1}{3}$.

Work Step by Step

Consider the point $\left( -1,-3 \right)$. Here, $x=-1$ and $y=-3$. The six trigonometric functions of $\theta $ are defined in terms of a ratio by using the right-angle triangle. In the figure, $y$ is the perpendicular, $x$ is the base and $r$ is the hypotenuse. According to the Pythagoras theorem, the hypotenuse is, $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ Substitute $-1$ for $x$ and $-3$ for $y$. $\begin{align} & r=\sqrt{{{\left( -1 \right)}^{2}}+{{\left( -3 \right)}^{2}}} \\ & =\sqrt{1+9} \\ & =\sqrt{10} \end{align}$ Recall the trigonometric expression of $\sin \theta $. $\sin \theta =\frac{y}{r}$ Substitute $-3$ for $y$ and $\sqrt{10}$ for $r$. $\begin{align} & \sin \theta =-\frac{3}{\sqrt{10}} \\ & =-\frac{3}{\sqrt{10}}\cdot \frac{\sqrt{10}}{\sqrt{10}} \\ & =-\frac{3\sqrt{10}}{10} \end{align}$ Recall the trigonometric expression of $\cos \theta $. $\cos \theta =\frac{x}{r}$ Substitute $-1$ for $x$ and $\sqrt{10}$ for $r$. $\begin{align} & \cos \theta =-\frac{1}{\sqrt{10}} \\ & =-\frac{1}{\sqrt{10}}\cdot \frac{\sqrt{10}}{\sqrt{10}} \\ & =-\frac{\sqrt{10}}{10} \end{align}$ Recall the trigonometric expression of $\tan \theta $. $\tan \theta =\frac{y}{x}$ Substitute $-1$ for $x$ and $-3$ for $y$. $\begin{align} & \tan \theta =\frac{-3}{-1} \\ & =3 \end{align}$ Recall the trigonometric expression of $\csc \theta $. $\csc \theta =\frac{r}{y}$ Substitute $-3$ for $y$ and $\sqrt{10}$ for $r$. $\csc \theta =-\frac{\sqrt{10}}{3}$ Recall the trigonometric expression of $\sec \theta $. $\sec \theta =\frac{r}{x}$ Substitute $-1$ for $x$ and $\sqrt{10}$ for $r$. $\begin{align} & \sec \theta =-\frac{\sqrt{10}}{1} \\ & =-\sqrt{10} \end{align}$ Recall the trigonometric expression of $\cot \theta $. $\cot \theta =\frac{x}{y}$ Substitute $-1$ for $x$ and $-3$ for $y$. $\begin{align} & \cot \theta =\frac{-1}{-3} \\ & =\frac{1}{3} \end{align}$ Thus, the six trigonometric functions of $\theta $ for point $\left( -1,-3 \right)$ are, $\sin \theta =-\frac{3\sqrt{10}}{\sqrt{10}},\cos \theta =-\frac{\sqrt{10}}{10},\tan \theta =3,\csc \theta =-\frac{\sqrt{10}}{3},\sec \theta =-\sqrt{10}$ and $\cot \theta =\frac{1}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.