Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.4 - Trigonometric Functions of Any Angle - Exercise Set - Page 575: 34

Answer

$\sin \theta =\dfrac{y}{r}=\dfrac{-1}{4} \\ \cos \theta =\dfrac{x}{r}=\dfrac{-\sqrt {15}}{4} \\ \tan \theta =\dfrac{y}{x}=\dfrac{\sqrt {15}}{15}$ and $\csc \theta =\dfrac{r}{y}=-4 \\ \sec \theta =\dfrac{r}{x}=-\dfrac{4 \sqrt {15}}{15} \\ \cot \theta =\dfrac{x}{y}=\sqrt {15}$

Work Step by Step

Here, $ y=-1; r=4$ and $ r=\sqrt {x^2+y^2}$ This gives: $ x=-\sqrt {(4)^2-(-1)^2}=- \sqrt {15}$; Because $\theta $ lies in Quadrant-III. The trigonometric ratios are as follows: $\sin \theta =\dfrac{y}{r}=\dfrac{-1}{4} \\ \cos \theta =\dfrac{x}{r}=\dfrac{-\sqrt {15}}{4} \\ \tan \theta =\dfrac{y}{x}=\dfrac{\sqrt {15}}{15}$ and $\csc \theta =\dfrac{r}{y}=-4 \\ \sec \theta =\dfrac{r}{x}=-\dfrac{4 \sqrt {15}}{15} \\ \cot \theta =\dfrac{x}{y}=\sqrt {15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.