Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.4 - Trigonometric Functions of Any Angle - Exercise Set - Page 575: 3

Answer

The six trigonometric functions of $\theta $ for point $\left( 2,3 \right)$ are, $\sin \theta =\frac{3\sqrt{13}}{13},\cos \theta =\frac{2\sqrt{13}}{13},\tan \theta =\frac{3}{2},\csc \theta =\frac{\sqrt{13}}{3},\sec \theta =\frac{\sqrt{13}}{2}$ and $\cot \theta =\frac{2}{3}$.

Work Step by Step

According to the Pythagoras theorem in a right angle triangle, the hypotenuse is given as, ${{r}^{2}}={{x}^{2}}+{{y}^{2}}$ Consider the point $\left( 2,3 \right)$. Here, $x=2$ and $y=3$. The six trigonometric functions of $\theta $ are defined in terms of the ratio. According to the Pythagoras theorem, the hypotenuse is, $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ Substitute $2$ for $x$ and $3$ for $y$. $\begin{align} & r=\sqrt{{{\left( 2 \right)}^{2}}+{{\left( 3 \right)}^{2}}} \\ & =\sqrt{4+9} \\ & =\sqrt{13} \end{align}$ Recall the trigonometric expression of $\sin \theta $. $\sin \theta =\frac{y}{r}$ Substitute $3$ for $y$ and $\sqrt{13}$ for $r$. $\begin{align} & \sin \theta =\frac{3}{\sqrt{13}} \\ & =\frac{3}{\sqrt{13}}.\frac{\sqrt{13}}{\sqrt{13}} \\ & =\frac{3\sqrt{13}}{13} \end{align}$ Recall the trigonometric expression of $\cos \theta $. $\cos \theta =\frac{x}{r}$ Substitute $2$ for $x$ and $\sqrt{13}$ for $r$. $\begin{align} & \cos \theta =\frac{2}{\sqrt{13}} \\ & =\frac{2}{\sqrt{13}}.\frac{\sqrt{13}}{\sqrt{13}} \\ & =\frac{2\sqrt{13}}{13} \end{align}$ Recall the trigonometric expression of $\tan \theta $. $\tan \theta =\frac{y}{x}$ Substitute $2$ for $x$ and $3$ for $y$. $\tan \theta =\frac{3}{2}$ Recall the trigonometric expression of $\csc \theta $. $\csc \theta =\frac{r}{y}$ Substitute $3$ for $y$ and $\sqrt{13}$ for $r$. $\csc \theta =\frac{\sqrt{13}}{3}$ Recall the trigonometric expression of $\sec \theta $. $\sec \theta =\frac{r}{x}$ Substitute $2$ for $x$ and $\sqrt{13}$ for $r$. $\sec \theta =\frac{\sqrt{13}}{2}$ Recall the trigonometric expression of $\cot \theta $. $\cot \theta =\frac{x}{y}$ Substitute $2$ for $x$ and $3$ for $y$. $\cot \theta =\frac{2}{3}$ Thus, the six trigonometric functions of $\theta $ for point $\left( 2,3 \right)$ are, $\sin \theta =\frac{3\sqrt{13}}{13},\cos \theta =\frac{2\sqrt{13}}{13},\tan \theta =\frac{3}{2},\csc \theta =\frac{\sqrt{13}}{3},\sec \theta =\frac{\sqrt{13}}{2}$ and $\cot \theta =\frac{2}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.